Classification of Training Exercises and Targeting of Training Objectives

> Prof. Dr. Sportwiss. J. Olbrecht, Ph.D. German University of Sports Sciences, Institute for Cardiology and Sports Medicine, Cologne (GER) Artevelde Institute of Higher Education, Ghent (BEL)

> > LEN Coaches Clinic - Budapest August 4th 2006

Topics

- What is targeting ?
- Why targeting ?
- How to target ?
- Concept of classification
- Conclusion

Present Observation

 Are there bad coaches ?
 Coaches of EC-swimmers are good coaches as it is much easier to break a talented swimmer than to make a champion. EC-coaches are clever
 However, some of them are a little bit more clever. They know how to maximise training efficiency.

What makes them different ?

make difference between more and less important
 their training meets swimmers' needs

Why targeting ?

- maximal exploitation of swimmer's potential
 - no waste of time nor effort
 - less risk on injuries/overuse
 - maximise training efficiency

How to target ?

• The right "Training Objectives"
 • Objectives
 • Objectiv

④ - Systematic and reliable control of training adaptations
"Steering Principle"

How to target ?

(MEASURING)

Define needs & individual adaptation capacity

Control evolution

J. Olbr<mark>echt, 2006</mark>

Key measure for Conditioning

Lactate test

J. Olbr<mark>echt, 2006</mark>

Lactate Curve

Lactate curve 400m Freestyle

Important Note re Lactate Curve

Lactate curve 400m Freestyle

Most Important Finding

Basic Drivers that move the Lactate Curve

Most Important Finding

How to explain the shift of a Lactate Curve ????

Olbrecht 2000

Lactate Tests

• $La_{bl} = f(VO_{2max}, VLa_{max})$

Bring in PC: Lactate - Distance - Speed - Stroke - Gender

Outcome: AEROBIC CAPACITY & ANAEROBIC CAPACITY

(VO_{2max})

(VLa_{max})

Capacity and Power

Aerobic Anaerobic

Capacity VO₂max **VLa**max Assessment conditioning profile Defining training objectives Determining appropriate volume, intensity and periodisation Power %VO₂max %VLamax Sompetition performance

J. Olbr<mark>echt, 2005</mark>

VO₂max & VLamax: Relevance for Maximal Performances - MAX is not always the BEST -

VO₂max : can never be too high
 Even for sprinters a very high VO₂max is very useful

VLamax : must be balanced

Depending on:

1. Competition distance to prepare

sprint VLamax may be high / Long Distance VLamax may be much lower

2. The higher VO₂max, the higher VLamax may be

J. Olbr<mark>echt, 2003</mark>

Framework to classify Training Exercises

Olbrecht J., Schwimmen, Lernen und Optimieren, Vol.7, 1994

Training Adaptations

Classification Approach

Training Effect

 Exercises with different layout / intensities may induce the same training effect

Layout of Exercise

- Form-based: Interval exercise, continuous effort, In & Outs, ...
- Intensity-based: AER1,AER2,...

Integration approach (compiles Rest, Fraction, Intensity and Volume)

Offers the coach more possibilities to achieve training effect

Concept for Classifying Training Exercises

- Each class groups workouts with the same main class effect; i.e. inducing the same major biological and functional adaptation => 4 classes
- Each classe is defined by criteria for: Volume - Intensity - Fraction - Rest
- Enables the coach to create "freely" new training sets for each of the classes, knowing which main training effect to expect

Classification of Training Exercises - Rowing

	Aerobic		Anaerobic		Aerobic		Anaerobic	
	Capacity		Capacity		Power		Power	
	(Endurance Cap.=AEC)		(=ANC)		(=AEP)		(=ANP)	
ANC- Strength	S	W	S	W	S	W	S	W
Volume*	Long	Very High	Moderate	Short	Lo	ng	Sł	nort
	(20-40min)	(35-70min)	(10-20min)	(5-10min)	(25min)	(35min)	(6-20min)	(4-8min)
Interval	Long	Short	Short	Very Short	Short progree	esses to Long	Short	
	(2-10min/cnt)	(1-5min/cnt)	(20-40s)	(15-30s)	(1-3min) =	> (3-9min)	(45s-120s)	
Intensity	 * Extensive <u>alternated</u> with <u>short intensive intervals</u> (QUALY + Regeneration) 		Nearly maximal	All out	Race Pace or somewhat faster		All-out	
Rest	Short		Long: 2x effort		Short => Very Short		Short	
	(60-30s) (90-60s)		(40-90s) (40-90s)		(90-60s) => (45-20s)		(10-20s within 3min)	
Example	6x5min R=60s 1,3 Hi SF+P rest very easy	4 x (1, 3, 10min) R=20s 1 = MAX, 3 = P and 10 = easy	12x30s R=80S	2x(3x30s) R=90s max	8x250m R=45s to 3x750m R=15s SFcomp/+	12x300m R=40s to 3x1000m R=20s SFcomp/+	Brokens / 1 3x(4x15str R=5-1	Test Comp. P) R=10s Omin
*depends o	n conditionina le	evel VSpri	nt and techniqu	e are not in this c	assification			Nbrocht 2006

Sprint and technique are not in this classification

Olbrecht 2006

Multidisciplinary Approach

PSV-Model (swimming)

Symbiosis Biomechanics & Physiology

on energe<mark>ht, 2003</mark>

Interaction Metabolic Profile and Nutrition

J. Olbrecht, 2003

Conclusions (1/2)

1. Maximising training efficiency is very important to make a champion.

- 2. Targeting = selection of the "needed" training
 - objective
 - exercise
 - timing (supercompensation)
- 3. Targeting will avoid waste of time and effort, and will reduce risk on injuries/overuse
- Important: objective measures to define needs and to evaluate training effect

Conclusions (2/2)

- 5. Make difference between the athletes' capacity and power (aerobic and anaerobic // ...).
- 6. Training exercises can be classified in 4 classes with each a main as well as secundary training effect
- 7. This classification takes into account the difference between capacity and power training objectives.
- 8. Multidisciplinary approach to set priorities
 - everything is important, but some things more than others

More details, examples and applications for planning, periodizing and optimizing swim training can be found in:

The Science of Winning

For more information contact:

Prof. Dr. Sportwiss. J. Olbrecht

٥٢

fg.partners@pandora.be

The Science of Winning

Planning, Periodizing and Optimizing Swim Training

J. Olbrecht

Sponsor and principal Distributor

Luton, England

J. Olbr<mark>echt, 2000</mark>